
Deep Learning techniques for signal
processing and event

reconstruction in DUNE

Supervisor: Manuel Rodriguez
E-mail: manuel.jesus.rodriguez.alonso@cern.ch
Supervisor: Lorenzo Uboldi
E-mail: lorenzo.uboldi@cern.ch
Supervisor: Paola Sala
E-mail: paola.sala@cern.ch

Openlab Project by:
Laura Accorto

E-mail: laura.accorto@gmail.com

Summer 2021



Abstract

DUNE - Deep Underground Neutrino Experiment - will be an experiment based in the USA
whose main goal will be to study long-baseline neutrino oscillations from an accelerator beam.
At CERN, a smaller prototype of the DUNE far detectors has been created, ProtoDUNE, with
the objective to test and validate the technology required for DUNE far detectors. The signal
captured by ProtoDUNE needs to be processed to clean it from noise. To do so, a Deep Learning
tool has been developed at CERN. However, the costs of this tool imply the necessity to evaluate
its performance comparing to more classical techniques, which involve lower costs. For this
reason, a statistical algorithm has been considered, which is the one currently used: the results
of the two solutions are compared in this project.

Introduction

DUNE - Deep Underground Neutrino Experiment - will be a large experiment that will be based
in the USA and whose main objective is to detect neutrinos and analyze their behaviour. At
CERN, a prototype of the DUNE far detector has been built: ProtoDUNE is a 20 times smaller
version of the DUNE far detector, whose components are scaled 1:1 and have the same design;
the role of this prototype is to test and validate the technology required for DUNE far detectors.

This experiment gathers a large amount of data, which needs to be lightened in order to save
memory space. For this reason, a technique to flexibly distinguish particle signal from everything
else is necessary. Two possibilities are analysed in this work: the first, a neural network for
image segmentation used to classify the signal; the second, a statistical approach - the Hit
finding algorithm - which is the currently used one. Each of the two techniques considered
has its strengths and its weaknesses, and for this reason, an analysis that compares the results
obtained has been conducted in this work.

First of all, we’re going to introduce the ProtoDUNE data and its structure. Then we will
describe the two techniques proposed to process the data and classify the signal in a deeper way.
A comparison between the results obtained is then made to show each technique’s advantages
and disadvantages.

The ProtoDUNE Data

ProtoDUNE is made up of two drift volumes, which are separated by a vertical cathode plane.
Two anode planes are positioned at the opposite sides of the drift volumes with respect to the
cathode. The detector is located inside a cryostat which insulates the detector volume from
the outside. ProtoDUNE detector is then filled with Liquid Argon (LAr). The cathode plane
is designed to be held at -180 kV, providing a 500 V/cm drift electric field in each of the two

2



opposite horizontal directions: this field allows an electron to travel the entire drift length in
slightly less than 2.5 �s. Ionization electrons, produced by traversing charged particles, are
drifted to the anode plane by the electric field. A closed circle purification system continuously
processes the LAr, eliminating contamination and refilling the active volume so that electrons
are not captured during their way.

On each of the two anode planes of ProtoDUNE, we can find three APAs - Anode Plane Assembly
- for a total of six APAs, performing the signal readout. Each APA is made by three planes of
evenly spaced wires: the first two planes - induction planes - are transparent to the drifting
electrons and, being traversed, read out the local modification of the electric field. The third
one - collection plane - is at the higher potential and collects the electrons, detecting the total
charge. The wires of the three planes are placed at different angles enabling a two-dimensional
reconstruction of the event when the information of the three planes is combined.

The signal is collected over time for each channel. In particular, ProtoDUNE data are split into
"events": the time scale has been discretized with a sampling rate of 2MHz, where each tick is a
sample; the event is then a 3ms window length, translating to 6000 ticks. We actually look at
5888 time-ticks over all 2080 channels from the three planes. Channels from 1 to 800 belong to
the first induction plane, channels from 801 to 1600 belong to the second induction plane, and
channels from 1601 to 2080 belong to the collection plane.

Data is loaded using PyTorch’s DataLoader : each event is divided into 23 subsequent batches,
containing 256 time-ticks each. Each batch is then a 2080x256 array: by concatenating all 23
batches in the correct order; then one can obtain the complete 2080x5888 array, which spaces
along all time-ticks of the event.

Once we have concatenated all batches for each channel, we can then visualize a time series
data representing the signal recorded at time t, t = 1; : : : ; 5888. Data regarding the single event
from a specific APA is then a collection of 2080 time series. For each APA, we have around 3580
events, a total of 3580 x 2080 (7446400) time series. Figure 1 shows the signal from channels
coming from induction and collection planes: it can be seen that data recorded by the collection
plane behaves very differently compared to data recorded by the induction planes. Over the
induction plane, the signal has a bipolar shape, while the collection plane signal has a positive
unipolar shape. This difference is due to the fact that the electrons pass through the induction
wires while the collection ones completely absorb them. In the collection plane, the signal to
noise ratio is much higher than in the induction planes, and, for this reason, it is much easier to
detect anomalies and distinguish the signal from noise when working over the collection plane.

It is possible to classify the signal through some different techniques. We will call a hit everything
which has to be classified as signal. In the next section, the two techniques we consider to find
the hits are presented and explained in more detail. In the end, for each event, we will obtain a

3



Figure 1: A signal from a chosen event of APA 5 over induction plane and collection plane

2080x5888 binary array, in which 1 denotes a hit found in the selected channel and in that time
tick, and 0 denotes noise.

RoI finding in ProtoDUNE

Our objective is to find the hits: a hit means everything which has to be denoted as signal.
Once we find the hits, we can detect the regions of interest (RoI), which are made up by the
adjacent hits in the array space.

To find hits in ProtoDUNE, we considered two algorithms:

• the Deep Learning algorithm that exploits neural network for semantic segmentation, to
classify the hits;

4



• the Hit finding algorithm that makes use of statistical techniques to classify the hits; this
is the currently used algorithm in the ProtoDUNE experiment.

Deep Learning algorithm

The Deep Learning algorithm exploits semantic segmentation theory, considering, for each event,
the 2080x5888 array as an image and classifying each pixel of it based on what object should be
the pixel part of, that is, either signal or noise. In this case, the output has the same dimension
as the input: a possible approach is to use the encoder-decoder architectures for the neural
network. The dimensionality of the data is firstly compressed and then restored to the original
one to make the pixel-wise classification.

We define a two-class segmentation task in our setting, where one class represents signal and
the other electronic noise. We can train the network to classify, pixel by pixel, a raw event of
ProtoDUNE identifying with precise localization of both signal and noise.

LinkNet (Chaurasia & Culurciello (2017)) is a neural network structured with encoder and
decoder blocks, and it is a lightweight and fast solution that solves the usual problem related
to semantic segmentation. In this approach, networks are generally deep and slow, and the
encoder-decoder structure tends to be difficult to train. Authors of LinkNet showed that it
outperforms many other semantic segmentation networks both in terms of speed and in terms
of accuracy. For this reason, this architecture has been chosen as a starting point: the Deep
Learning algorithm used for ProtoDUNE is a tiny and simplified version of LinkNet. Having
only two classes, a sigmoid has been used instead of a softmax as an activation function for
the last layer. For every pixel, the output is p 2 [0; 1] representing the signal probability. The
output is converted to binary at the end, putting each pixel to 1 if the probability of being
signal is more than 0.5, to 0 otherwise.

Hit finding algorithm

The currently used solution, Hit finding algorithm, exploits the Frugal algorithm (Ma et al.
(2014)) to create a threshold based on which the classification is conducted: data is classified as
signal wherever it lays above this threshold; otherwise, it is considered as noise.

In this case, data is considered in its time-series shape: for each event, for each channel, the
time-series containing the intensity of the signal at time t is analyzed.

In order to "smooth" the time series, a modification of the Frugal algorithm is considered.

Frugal algorithm can use only one unit of memory per group to compute a generic quantile
for each group in a stream of data. For stochastic streams where data items are drawn from
a distribution independently, it is proved that the algorithm finds an approximation to the
quantile rapidly and remains stably close to it. Through this algorithm, the generic quantile is

5



estimated by following the direction suggested by the data stream: if it increases, the quantile
does it too. At the very beginning, the quantile estimate is set to 0; then, for each step of the
data stream, if data is higher than the quantile estimation, the quantile estimation is increased
by 1; otherwise, it is decreased by 1. The detailed algorithm for the generic quantile is shown in
Ma et al. (2014).

In Hit finding algorithm the Frugal algorithm is used to compute 25%, 75% quantiles and the
median (50% quantile), but with a modification of the algorithm. The modification proposed
and used throughout the Hit finding algorithm uses accumulators to evaluate the median and
the quantiles. Instead of updating the quantile estimation, ~m, time-by-time, it is made only
when an accumulator is over its limit. For example, if the limit is 10, then it has to happen that
si > ~m 10 times subsequently to increment ~m (similarly for the decrementation). This variation
produces smoother estimations of the quantiles (the higher the accumulator limit, the smoother
the estimation will be).

The median, the 25% and the 75% quantiles are calculated for each time-series data (that is, for
each channel and each event). The median is considered as a pedestal, and the 25% and 75%
quantiles allow to estimate the pedestal’s variance at time t, �t; then, the threshold at time t is
calculated as K � �t, where K = 5 for all channels in the collection plane, and K = 3 for all
channels in the two induction planes.

The threshold is calculated over the raw data but applied over data in which a Firwin filter 1

with 7 taps and a 0.1 cutoff has been applied in order to remove some noise. A hit is identified
every time the filtered data lays over the threshold.

An example of all quantities calculated by the Hit finding algorithm for channel 1750 over a
single event of APA 5 is presented in figure 2.

This procedure is repeated for each channel and each event, obtaining an output which is
analogue to the Deep Learning algorithm one, that is, a binary 2080x5888 array for each event
and each APA.

Comparison and analysis of the two RoI finding techniques

Both algorithms shown in the previous section allow us to find hits and, consequently, the
regions of interest. Still, one has to analyse the results in order to see the main differences,
highlighting the advantages and disadvantages of each technique.

An advantage of the Hit finding algorithm is that being a statistical algorithm, everything it
does is easy to interpret and to understand. In contrast, the Deep Learning algorithm is actually
a black box. On the other hand, the Deep Learning algorithm could allow higher performance in
terms of accuracy. Therefore one should evaluate if it is worth it to apply this technique to data.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html

6



Figure 2: Hit finding algorithm applied over a single event of APA 5, channel 1750.

To analyse the main differences between the results proposed by the two algorithms, we start
counting the average percentage of covered image (PCI) for results given by each algorithm.
PCI is calculated by counting the percentage of pixels classified as a hit on each event and then
averages over all the events. We obtain PCI = 2:92% for the Deep Learning algorithm and
PCI = 0:74% for the Hit finding algorithm, that is, Deep Learning algorithm predicts almost 4
times more hits than the Hit finding algorithm.

To see the spatial distribution of the signal for each algorithm, we can consider 2D-Histograms
over a sample of randomly chosen events. These histograms are made by overlapping events so
that for each pixel, we have the frequency of predicted hit on that pixel, that is on that channel
and on that time-tick. In figure 3 histograms for both Deep Learning algorithm and Hit finding
algorithm are presented.

From the histogram, we can see that, while the Deep Learning algorithm tends to predict hits
uniformly all over the channels without any significant difference, the Hit finding algorithm is
more likely to predict hits over channels belonging to the collection plane, that is, from channel
1600 to 2080. This fact could be due to the statistical algorithm being not flexible enough for
the induction planes classification task.

We confirm this feature if we also calculate the average PCIs over the different planes, which are
collected in the table 1. It is clear that the Deep Learning algorithm performance is stable over

7




	Bibliography

