Big Data and Storage Management at the Large Hadron Collider

Dirk Duellmann
CERN IT, Data & Storage Services

Accelerating Science and Innovation
CERN was founded 1954: 12 European States
“Science for Peace”
Today: 21 Member States

Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom
Candidate for Accession: Romania
Associate Members in Pre-Stage to Membership: Serbia
Applicant States for Membership or Associate Membership:
Brazil, Cyprus (awaiting ratification), Pakistan, Russia, Slovenia, Turkey, Ukraine
Observers to Council: India, Japan, Russia, Turkey, United States of America; European Commission and UNESCO

~ 2,300 staff
~ 1,000 other paid personnel
> 11,000 users
Budget (2013) ~1,000 MCHF
Global Science: 11000 scientists

Distribution of All CERN Users by Nation of Institute on 4 April 2012

MEMBER STATES
- Austria 102
- Belgium 138
- Bulgaria 53
- Czech Republic 202
- Denmark 75
- Finland 101
- France 908
- Germany 1318
- Greece 105
- Hungary 57
- Italy 1417
- Netherlands 186
- Norway 90
- Poland 206
- Portugal 133
- Slovakia 61
- Spain 363
- Sweden 88
- Switzerland 397
- United Kingdom 784

6784

CANDIDATE FOR
- Accession
 - Romania 78

ASSOCIATE MEMBER
IN THE PRE-STAGE TO MEMBERSHIP
- Israel 67
- Serbia 26

OTHERS
- China 115
- China (Taipei) 70
- Colombia 10
- Croatia 21
- Cuba 4
- Cyprus 9
- Egypt 7
- Ethiopia 17
- Georgia 10
- Iceland 3
- Iran 16
- Ireland 10
- Israel 20
- Korea 91
- Lebanon 1
- Libya 13
- Malta 1
- Mexico 43
- Montenegro 1
- Morocco 6
- New Zealand 11
- Oman 1
- Pakistan 22
- Peru 2
- Qatar 9
- Saudi Arabia 3
- Slovenia 38
- South Africa 21
- Thailand 5
- T.F.Y.R.O.M. 2
- Tunisia 1

934

3050

OBSERVERS
- India 134
- Japan 225
- Russia 859
- Turkey 83
- USA 1749
Stars and Planets only account for a small percentage of the universe!
Collisions at the LHC: summary

Proton - Proton: 2808 bunch/beam
Protons/bunch: 10^{11}
Beam energy: 7 TeV (7x10^{12} eV)
Luminosity: 10^{34} cm$^{-2}$s$^{-1}$
Crossing rate: 40 MHz
Collision rate: 10^7-10^9

New physics rate: 0.00001 Hz

Event selection: 1 in $10,000,000,000,000,000$
The 27 km long ring is sensitive to <1mm changes.
The Worldwide LHC Computing Grid

7000 tons, 150 million sensors generating data 40 millions times per second, i.e. a petabyte/s

The ATLAS experiment
A collision at LHC
The Data Acquisition for one Detector

~ 300.000 MB/s from all sub-detectors

~ 300MB/s Raw Data
Tier 0 at CERN: Acquisition, First reconstruction, Storage & Distribution

Tier 0 at CERN:
Acquisition, First reconstruction, Storage & Distribution

2011: 4-6 GB/sec

2011: 400-500 MB/sec

1.25 GB/sec (ions)
The LHC Data Challenge

- The accelerator will run for 20 years
- Experiments are producing about **25 Million Gigabytes** of data each year (about 3 million DVDs – 850 years of movies!)
- LHC data analysis requires a computing power equivalent to ~100,000 of today's fastest PC processors
- Requires many cooperating computer centres, as CERN can only provide ~20% of the capacity
WLCG – what and why?

A distributed computing infrastructure to provide the production and analysis environments for the LHC experiments

Managed and operated by a worldwide collaboration between the experiments and the participating computer centres

The resources are distributed – for funding and sociological reasons

Our task was to make use of the resources available to us – no matter where they are located

Tier-0 (CERN):
- Data recording
- Initial data reconstruction
- Data distribution

Tier-1 (12 centres + Russia):
- Permanent storage
- Re-processing
- Analysis

Tier-2 (~140 centres):
- Simulation
- End-user analysis

- ~ 160 sites, 35 countries
- 300000 cores
- 200 PB of storage
- 2 Million jobs/day
- 10 Gbps links
Data 2008-2013

CERN Tape Writes
27 PB
23 PB
15 PB

Tape Usage Breakdown

CERN Tape Archive

CERN Tape Verification

Data Loss: ~65 GB over 69 tapes
Duration: ~2.5 years

March 2014
Data transfers

- Global transfer rates are always significant (12-15 GB/s) – permanent on-going workloads

- CERN export rates driven (mostly) by LHC data export
No stop for the computing!

Activity on 1 January 2014
Running Jobs: 223509
Transfer rate: ~2.5 GiB/s
Processing on the Grid

1.4 10^9 HEPSPEC06/Month (210 K CPU continuous use)

Close to full capacity
Broader Impact of the LHC Computing Grid

- WLCG has been leveraged on both sides of the Atlantic, to benefit the wider scientific community
 - Europe:
 - Enabling Grids for E-sciencE (EGEE) 2004-2010
 - European Grid Infrastructure (EGI) 2010--
 - USA:
 - Open Science Grid (OSG) 2006-2012 (+ extension?)

- Many scientific applications ➔

Archeology
Astronomy
Astrophysics
Civil Protection
Comp. Chemistry
Earth Sciences
Finance
Fusion
Geophysics
High Energy Physics
Life Sciences
Multimedia
Material Sciences
...
A public-private partnership between the research community and industry
CERN openlab in a nutshell

- A science – industry partnership to drive R&D and innovation with over a decade of success
- Evaluate state-of-the-art technologies in a challenging environment and improve them
- Test in a research environment today what will be used in many business sectors tomorrow
- Train next generation of engineers/employees
- Disseminate results and outreach to new audiences
The CERN Data Centre in Numbers

- Data Centre Operations (Tier 0)
 - 24x7 operator support and System Administration services to support 24x7 operation of all IT services.
 - Hardware installation & retirement
 - ~7,000 hardware movements/year; ~1800 disk failures/year
 - Management and Automation framework for large scale Linux clusters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Racks</td>
<td>1127</td>
</tr>
<tr>
<td>Servers</td>
<td>10,070</td>
</tr>
<tr>
<td>Processors</td>
<td>17,259</td>
</tr>
<tr>
<td>Cores</td>
<td>90,948</td>
</tr>
<tr>
<td>HEPSpec06</td>
<td>744,277</td>
</tr>
<tr>
<td>Disks</td>
<td>75,718</td>
</tr>
<tr>
<td>Raw disk capacity (TiB)</td>
<td>113,852</td>
</tr>
<tr>
<td>Memory modules</td>
<td>64035</td>
</tr>
<tr>
<td>Memory capacity (TiB)</td>
<td>312</td>
</tr>
<tr>
<td>RAID controllers</td>
<td>3,091</td>
</tr>
<tr>
<td>Tape Drives</td>
<td>120</td>
</tr>
<tr>
<td>Tape Cartridges</td>
<td>52000</td>
</tr>
<tr>
<td>Tape slots</td>
<td>66000</td>
</tr>
<tr>
<td>Data on Tape (PiB)</td>
<td>75</td>
</tr>
<tr>
<td>High Speed Routers</td>
<td>29</td>
</tr>
<tr>
<td>Ethernet Switches</td>
<td>874</td>
</tr>
<tr>
<td>10 Gbps/100Gbps ports</td>
<td>1396/74</td>
</tr>
<tr>
<td>Switching Capacity</td>
<td>6 Tbps</td>
</tr>
<tr>
<td>1 Gbps ports</td>
<td>27984</td>
</tr>
<tr>
<td>10 Gbps ports</td>
<td>5664</td>
</tr>
<tr>
<td>IT Power Consumption</td>
<td>2392 KW</td>
</tr>
<tr>
<td>Total Power Consumption</td>
<td>3929 KW</td>
</tr>
</tbody>
</table>

March 2014
Thank You!