Implementing parallel algorithms for data analysis in ROOT/RooFit

Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Workshop on Future Computing in Particle Physics, e-Science Institute, Edinburgh (UK)
June 15th–17th, 2011
CERN openlab

- CERN openlab is the only large-scale structure at CERN for developing industrial R&D partnerships
 - www.cern.ch/openlab-about

- Divided in competence centers
 - HP: wireless networking
 - Intel: advanced hardware and software evaluations and integrations
 - Oracle: database and storage
 - Siemens: automating control systems

Alfio Lazzaro (alfio.lazzaro@cern.ch)
Part of our activity is to develop new benchmarks that are representative of the computing applications used at CERN

- Simulation, reconstruction, data analysis
- Collaboration with the physics community
- We use these applications for evaluating the performance of new Intel platforms, working closely with Intel experts

In this and in next presentation we will present what we are doing for data analysis applications

- Biased from my experience in the Babar and Atlas experiments. However, data analysis is not our goal, so we don’t focus on any specific analysis
 - Strong collaboration with physics collaborators to have wide coverage of different analyses
Our way to proceed:
- Understanding the current version of the algorithm
- Rewriting the algorithm so that we can improve it
 - Optimizations, vectorization, numerical accuracy
- Apply parallelization
- Porting the algorithm on accelerators

We will focus on the problem we have encountered and on the solutions we have adopted, rather than showing results
- Most technical details, useful in the context of a workshop
- In my presentation I will introduce the application and the parallelization on the CPU, while in the next presentation Yngve will show the porting to the GPU

Alfio Lazzaro (alfio.lazzaro@cern.ch)
Huge quantity of data collected, but most of events are due to well-know physics processes

- New physics effects expected in a tiny fraction of the total events: few tens

Crucial to have a good discrimination between interesting (signal) events and the rest (background)

- Data analysis techniques play a crucial role in this “war”
Likelihood-based techniques

- Data are a collection of independent events
 - an event consists of the measurement of a set of variables (energies, masses, spatial and angular variables...) recorded in a brief span of time by the physics detectors

- Introducing the concept of probability \mathcal{P} (= Probability Density Function, PDF) for a given event to be signal or background, we can combine this information for all events in the likelihood function

$$\mathcal{L} = \prod_{i=1}^{N} \mathcal{P}(\hat{x}_i | \hat{\theta})$$

 - N number of events
 - \hat{x}_i set of variables for the event i
 - $\hat{\theta}$ set of parameters

- Several data analysis techniques requires the evaluation of \mathcal{L} to discriminate signal versus background events
Maximum Likelihood Fits

- It allows to estimate free parameters over a data sample, by minimizing the corresponding Negative Log-Likelihood (NLL) function (extended likelihood)

$$NLL = \sum_{j=1}^{s} n_j - \sum_{i=1}^{N} \left(\ln \sum_{j=1}^{s} n_j p_j(\hat{x}_i | \hat{\theta}_j) \right)$$

- s species, i.e. signals and backgrounds
- n_j number of events belonging to the species j

- The procedure of minimization can require several evaluation of the NLL
 - Depending on the complexity of the function, the number of observables, the number of free parameters, and the number of events, the entire procedure can require long execution time
 - Mandatory to speed-up the execution

Alfio Lazzaro (alfio.lazzaro@cern.ch)
In most cases PDFs can be factorized as product of the n PDFs of each variable (i.e. case of uncorrelated variables)

$$
\mathcal{P}_j(\hat{x}_i | \hat{\theta}_j) = \prod_{v=1}^{n} \mathcal{P}_j^v(x_i^v | \hat{\theta}_j)
$$

Gaussian

$G(x | \mu, \sigma)$
In most cases PDFs can be factorized as product of the n PDFs of each variable (i.e. case of uncorrelated variables):

$$P_j(\hat{x}_i | \hat{\theta}_j) = \prod_{v=1}^{n} P_j^v(x_i^v | \hat{\theta}_j)$$

Combined Atlas & CMS Higgs analysis:
12 variables
50 free parameters
Building models: RooFit

- RooFit is commonly used in High Energy Physics experiments to define the likelihood functions (W. Verkerke and D. Kirkby)
 - Details at http://root.cern.ch/drupal/content/roofit
 - Mathematical concepts are represented as C++ objects

- On top of RooFit developed another package for advanced data analysis techniques, RooStats
 - Limits and intervals on Higgs mass and New Physics effects
Numerical minimization of the NLL using MINUIT (F. James, Minuit, Function Minimization and Error Analysis, CERN long write-up D506, 1970)

MINUIT uses the gradient of the function to find local minimum (MIGRAD), requiring

- The calculation of the gradient of the function for each free parameter, naively

$$\frac{\partial NLL}{\partial \hat{\theta}} \bigg|_{\hat{\theta}_0} \approx \frac{NLL(\hat{\theta}_0 + \hat{d}) - NLL(\hat{\theta}_0 - \hat{d})}{2\hat{d}}$$

- The calculation of the covariance matrix of the free parameters, i.e. evaluation of the second order derivatives

- The minimization is done in several steps moving in the Newton direction: each step requires the calculation of the gradient
 - Several calls to the NLL
We developed a new algorithm for the likelihood function evaluation to be added in RooFit

- We don’t replace the current RooFit algorithm, which is used for results checking
- Very chaotic situation: users can implement any kind of model
- No need to change the user code to use the new implementation, i.e. same interface (use a simple flag to switch to the new algorithm)

The new algorithm is optimized to run on the CPU
- Used as reference for the GPU implementation: “fair” comparison

All data in the calculation are in double precision floating point numbers

Our target is to use commodity systems (e.g. laptops or desktops), easily accessible to data analysts
- Of course we tests also on server systems
1. Read the values of the variables for each event
2. Make the calculation of PDFs for each event
 - Each PDF has a common interface declared inside the class RooAbsPdf with a virtual method which defines the function
 - Automatic calculation of the normalization integrals for each PDF
 - Calculation of composite PDFs: sums, products, extendend PDFs
3. Loop on all events and make the calculation of the NLL
 - A single loop for all events

Table

<table>
<thead>
<tr>
<th>Events</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>var$_1$</td>
</tr>
<tr>
<td>2</td>
<td>var$_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>var$_n$</td>
</tr>
</tbody>
</table>
Likelihood Function evaluation in RooFit (2)

Ex: \(\mathcal{P} = \mathcal{P}_A(a_i) \mathcal{P}_B(b_i) \)

\[
\begin{array}{c|c}
 a_1 & b_1 \\
 a_2 & b_2 \\
\end{array}
\]

\[NLL = 0 \]
Likelihood Function evaluation in RooFit (2)

Ex: \(P = P_A(a_i) P_B(b_i) \)

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(b_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_2)</td>
<td>(b_2)</td>
</tr>
</tbody>
</table>

\[\text{NLL} = -\ln [P_A(a_1)P_B(b_1)] \]
Likelihood Function evaluation in RooFit (2)

Ex: \(\mathcal{P} = \mathcal{P}_A(a_i) \mathcal{P}_B(b_i) \)

<table>
<thead>
<tr>
<th>a_1</th>
<th>b_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2</td>
<td>b_2</td>
</tr>
</tbody>
</table>

\[\mathcal{P}_A(a_2) \mathcal{P}_B(b_2) \]\n
\[NLL = -\ln \left[\mathcal{P}_A(a_2) \mathcal{P}_B(b_2) \right] \]
Looping over all events and do the accumulation on \textit{NLL}

- Data are stored in something like ROOT TTree (RooTreeDataStore)
 - Very inefficient. At then our variables are simple float/double/int values
 - It breaks any possible vectorization
 - No thread safe, parallelization done with a fork, i.e. no shared memory

- In the C++ OO spirit, there is a common interface (RooAbsReal) and then virtual methods in all derivate classes
 - Each PDF calls virtual methods to access parameters, the observables, the integral value for the normalization, calculation of the \textit{ln’s}, ...
 - In case of composite PDFs (e.g. sums, products) it requires the call to virtual method of corresponding PDFs
 - A lot of virtual function calls!

- If the PDF doesn’t change in the minimization, they are precalculated for all events and stored as a standard variable in the dataset
 - Not efficient way for caching the values of the PDFs
 - It doesn’t take in account caching of constant values of the PDF inside a single minimization iteration
PDFs are considered as independent entities, i.e. a PDF doesn’t know if it is called inside a minimization process, from a mother composite PDF, or with a direct call
 - A PDF is not responsible to read the corresponding data
 - The PDF provides a single result for a given values of the data and parameters
 - In case of calculation which gives errors (e.g. negative probability), we get a warning message for the given values of the data and parameters

Parallelization with a fork increases the memory footprint with the number of threads, but data are read-only!
 - Still it is easy to implement and it gives good scalability

At the end, we are doing the evaluation of functions (PDFs) over a vector of read-only data!
 - Suitable for loop parallelism (note functions can be very complex!)
1. Read all events and store in arrays in memory
2. For each PDF make the calculation on all events
 - Corresponding array of results is produced for each PDF
 - Evaluation of the function inside the local PDF
3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: $\mathcal{P} = \mathcal{P}_A(a_i) \mathcal{P}_B(b_i)$

\[
\begin{array}{c|c}
 a_1 & b_1 \\
 a_2 & b_2 \\
\end{array}
\]
New algorithm and parallelization (1)

1. Read all events and store in arrays in memory
2. For each PDF make the calculation on all events
 - Corresponding array of results is produced for each PDF
 - Evaluation of the function inside the local PDF
3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: $P = P_A(a_i)\; P_B(b_i)$
New algorithm and parallelization (1)

1. Read all events and store in arrays in memory
2. For each PDF make the calculation on all events
 - Corresponding array of results is produced for each PDF
 - Evaluation of the function inside the local PDF
3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: $\mathcal{P} = \mathcal{P}_A(a_i) \mathcal{P}_B(b_i)$
New algorithm and parallelization (1)

1. Read all events and store in arrays in memory
2. For each PDF make the calculation on all events
 - Corresponding array of results is produced for each PDF
 - Evaluation of the function inside the local PDF
3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: $P = P_A(a_i) \cdot P_B(b_i)$
New algorithm and parallelization (1)

1. Read all events and store in arrays in memory
2. For each PDF make the calculation on all events
 - Corresponding array of results is produced for each PDF
 - Evaluation of the function inside the local PDF
3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: $\mathcal{P} = \mathcal{P}_A(a_i) \mathcal{P}_B(b_i)$
New algorithm and parallelization (1)

1. Read all events and store in arrays in memory
2. For each PDF make the calculation on all events
 - Corresponding array of results is produced for each PDF
 - Evaluation of the function inside the local PDF
3. Combine the arrays of results (composite PDFs)
4. Loop over the final array of results to calculate NLL (final reduction)

Ex: $P = \mathcal{P}_A(a_i) \mathcal{P}_B(b_i)$

\[
\begin{array}{cccc}
 a_1 & b_1 & P_A(a_1) & P_B(b_1) \\
 a_2 & b_2 & P_A(a_2) & P_B(b_2) \\
\end{array}
\]

Final reduction in NLL
Parallelization splitting calculation of each PDF over the events (data parallelism) and over the independent PDFs (task parallelism).

Data are organized in vector, which are shared in memory.
- Perfect for vectorization.

Call the PDFs once for all events.
- Reduce dramatically the number of virtual function calls!
- Perfect for caching values over the iterations during the minimization.

Drawbacks:
- Require to handle arrays of temporary results: 1 value per each event and PDF.
- Memory footprint increases with the number of events and number of PDFs, but not with the number of threads!
- Due to the vectorization, we cannot have warning messages for a given event, but only at the end of the loop for the calculation over all events.

Alfio Lazzaro (alfio.lazzaro@cern.ch)
First of all we added a new class to manage the data as vectors (based on map of std::vector’s, where the key is the name of the observable)

We added a class to take in account the array of results (based on std::vector)

The loop parallelism is implemented using OpenMP

- An OpenMP pragma loop for each loop used in the evaluation of the function

Added new methods to the PDF interface

- Still the old interface is working

Using Intel compiler for the auto-vectorization of the loops (using svml library by Intel)

- GNU compiler cannot auto-vectorize complex functions (like exp’s), unless you use intrinsics...
Very easy parallelization with OpenMP

Take benefit from the code optimizations
- Inlining of the functions, no virtual functions
- Data organized in C arrays, perfect for vectorization

Easily avoid race conditions, keep the parallel region limited inside each PDF
The final reduction for the *NLL* evaluation done in parallel using block-wise algorithm

- Numerical approximation w.r.t. sequential reduction, which are number of threads dependent
- Minuit is very sensitive to these approximation
 - Of course differences are negligible, but still they can worry people (and they can be non deterministic)

- We need to switch off any compiler optimization inside the reduction, using pragmas

Now the results are identical up to 10^{-6}, no matter how many threads you are running
Complex Model Test

\[n_a \left[f_1, a G_{1,a}(x) + (1 - f_1, a) G_{2,a}(x) \right] AG_{1,a}(y) AG_{2,a}(z) + \]
\[n_b G_{1,b}(x) BW_{1,b}(y) G_{2,b}(z) + \]
\[n_c AR_{1,c}(x) P_{1,c}(y) P_{2,c}(z) + \]
\[n_d P_{1,d}(x) G_{1,d}(y) AG_{1,d}(z) \]

Model from B. Aubert et. al.,

17 PDFs in total, 3 variables, 4 components, 35 parameters

- G: Gaussian
- AG: Asymmetric Gaussian
- BW: Breit-Wigner
- AR: Argus function
- P: Polynomial

40% of the execution time is spent in exp’s calculation

Note: all PDFs have analytical normalization integral, i.e. >98% of the sequential portion can be parallelized
Test on CPU in sequential

- Dual socket Intel Westmere-based system: CPU (L5640) @ 2.27GHz (12 physical cores, 24 hardware threads in total), 10x4096MB DDR3 memory @ 1333MHz
- Linux 64bit, Intel C++ compiler version 12.0.2

<table>
<thead>
<tr>
<th># Events</th>
<th>10,000</th>
<th>25,000</th>
<th>50,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>RooFit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># NLL evaluations</td>
<td>15810</td>
<td>14540</td>
<td>19041</td>
<td>12834</td>
</tr>
<tr>
<td>Time (s)</td>
<td>826.0</td>
<td>1889.0</td>
<td>5192.9</td>
<td>6778.9</td>
</tr>
<tr>
<td>Time per NLL evaluation (ms)</td>
<td>52.25</td>
<td>129.92</td>
<td>272.72</td>
<td>528.19</td>
</tr>
<tr>
<td>OpenMP (w/o vectorization)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># NLL evaluations</td>
<td>15237</td>
<td>17671</td>
<td>15761</td>
<td>11396</td>
</tr>
<tr>
<td>Time (s)</td>
<td>315.1</td>
<td>916.0</td>
<td>1642.6</td>
<td>2397.3</td>
</tr>
<tr>
<td>Time per NLL evaluation (ms)</td>
<td>20.68</td>
<td>51.84</td>
<td>104.22</td>
<td>210.36</td>
</tr>
<tr>
<td>w.r.t. RooFit</td>
<td>2.5x</td>
<td>2.5x</td>
<td>2.6x</td>
<td>2.5x</td>
</tr>
<tr>
<td>OpenMP (w/ vectorization)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># NLL evaluations</td>
<td>15304</td>
<td>17163</td>
<td>15331</td>
<td>12665</td>
</tr>
<tr>
<td>Time (s)</td>
<td>178.8</td>
<td>492.1</td>
<td>924.2</td>
<td>1536.9</td>
</tr>
<tr>
<td>Time per NLL evaluation (ms)</td>
<td>11.68</td>
<td>28.67</td>
<td>60.28</td>
<td>121.35</td>
</tr>
<tr>
<td>w.r.t. RooFit</td>
<td>4.5x</td>
<td>4.5x</td>
<td>4.4x</td>
<td>4.4x</td>
</tr>
</tbody>
</table>

Vectorization gives a 1.8x speed-up (SSE).
Additional 12% using AVX on Intel Sandy Bridge

4.5x faster!
Test on CPU in parallel

- Dual socket Intel Westmere-based system: CPU @ 2.67GHz (12 physical cores, 24 hardware threads in total), Turbo Mode ON, 10x4096MB DDR3 memory @ 1333MHz
- Linux 64bit, Intel C++ compiler version 12.0.2
- 100,000 events
- Data is shared, i.e. no significant increase in the memory footprint
 - Possibility to use Hyper-threading (about 20% improvement)
- Limited by the sequential part, OpenMP overhead, and memory access to data
Improvements

- Scalability is limited by accessing the array of results
 - In particular the effect becomes important for PDFs with simple function, like polynomials and composite PDFs (add and prod)
 - We do pinning of the threads to the physical cores, taking in account the NUMA effect
 - However the performance depends on the cache memory available on the systems
 - Testing on a 4 core i7 desktop system (8 MB L3 cache) we reach a factor ~2x with 8 threads (using SMT)
- We solve this problem with different techniques
 - Merge the number of OpenMP parallel region and reuse the data (in particular for composite PDFs)
 - Do block-splitting, i.e. do full evaluation for small sub-groups of events
- Doing this optimization we are able to reach 4.6x on the 4 core i7 desktop system (8 threads with SMT)
Conclusion (1)

- Implementation of the algorithm in OpenMP required not so drastic changes in the existing RooFit code
 - In any case we added our implementation, so that users can use the original implementation for reference
- Optimization gives a great speed-up: ~5x
- Note that our target is running at the user-level of small systems (laptops, desktops), i.e. with small number of CPU cores
- Very important to take under control numerical accuracy
 - We would like to try single precision in case of PDF evaluation, moving to double precision for the final reduction
 - Reduce memory footprint (half space for results)
 - Gain a factor possible 2x from vectorization
• Try the code on LHC analyses
 • Dalitz analysis
 • Working with RooStats authors

• We are also evaluating Intel MIC platform, which looks very promising as accelerator system (very easy to use it)
 • x86 instruction set accelerator
 • 512-bit SIMD units
 • More than >50 cores

• There will a workshop at CERN discussing “Future Challenges in Tracking and Trigger Concepts”: http://indico.cern.ch/event/tracking2011